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We are driven by dual motivations
1. Enhance the capabilities of active recognition agents in handling open 

vocabulary using CLIP.
2. Overcome the inherent limitations of CLIP in unconstrained embodied 

perception scenarios.

Active recognition: by making movements, the agent can correct its recognition 
failure at the starting position.

Investigation Dataset

CLIP: Sensitivity to Viewpoints and Occlusions

For better investigation of varying viewpoints and occlusions, we collect 
testing datasets from two widely-adopted platforms.
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Grid color for correct or wrong prediction.

The performance of CLIP on the ”table” class. The heatmap reveals a significant 
imbalance in accuracy across various viewpoints, underscoring the importance of 

active observation selection in embodied agents equipped with CLIP.

For different viewpoints, the discrepancy between the mean and 
maximum accuracy is an astonishing 40.1%!

Performance of CLIP across all viewpoints within each category, reporting the 
mean, median, and maximum accuracy.

The average accuracy drop at 
three different occlusion levels 
are 3.1%, 4.0%, and 5.0%, 
respectively

Method

The class split setting of active open-vocabulary recognition.

During training: only base classes are presented to the agent. 
During testing: the target is sampled from a broader open vocabulary.
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Idea: Disentangle semantics from the policy and the fusion modules.
 - use prediction confidence instead of semantic feature directly produced 
by CLIP models.

Our agent is trained with the PPO algorithm using the reward defined as 
the classification score belonging to the correct class.

Result

For split 10/45/55, the proposed method achieves 53.3% accuracy for 
open classes, while the baseline CLIP model has 29.6%.


