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CLIP: Sensitivity to Viewpoints and Occlusions

Motivations

CLIP prediction
Table (correct)

CLIP prediction
Chair (wrong)

Active recognition: by making movements, the agent can correct its recognition
failure at the starting position.

We are driven by dual motivations

1. Enhance the capabilities of active recognition agents in handling open
vocabulary using CLIP.

2. Overcome the inherent limitations of CLIP in unconstrained embodied

perception scenarios.
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Investigation Dataset

For better investigation of varying viewpoints and occlusions, we collect
testing datasets from two widely-adopted platforms.
Target: Cabinet

Investigation ShapeNet dataset
a. 12 x 12 different viewpoints.
b. Randomly added occlusions

Investigation Habitat dataset:
30° increments around the target
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A sample from “table” class. Average accuracy across all samples within
Grid color for correct or wrong prediction. the “table” class for each view.
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The performance of CLIP on the "table” class. The heatmap reveals a significant
Imbalance in accuracy across various viewpoints, underscoring the importance of
active observation selection in embodied agents equipped with CLIP.
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Performance of CLIP across all viewpoints within each category, reporting the
mean, median, and maximum accuracy.

For different viewpoints, the discrepancy between the mean and
maximum accuracy is an astonishing 40.1%!
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The class split setting of active open-vocabulary recognition.

During training: only base classes are presented to the agent.
During testing: the target is sampled from a broader open vocabulary.
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Idea: Disentangle semantics from the policy and the fusion modules.
- use prediction confidence instead of semantic feature directly produced
by CLIP models.

Our agent is trained with the PPO algorithm using the reward defined as
the classification score belonging to the correct class.

Base/novel /open classes split

Model 10/45/55 20/35/55 55/0/55

Base classes Novel classes Open classes Base classes Novel classes Open classes Base classes

top-1 | top-3 | top-1 | top-3 | top-1 | top-3 | top-1 | top-3 | top-1 | top-3 | top-1 | top-3 | top-1 | top-3

CLIP (ViT-B/32) 33.1 52.2 21.6 34.0 29.6 46.7 30.1 47.4 24.8 39.3 29.6 46.7 29.6 46.7

Ours 60.6 81.3 36.6 55.1 53.3 73.4 57.9 76.8 47.8 69.0 56.6 75.7 59.2 78.8

For split 10/45/55, the proposed method achieves $3.3% accuracy for
open classes, while the baseline CLIP model has 29.6%.




