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Unexpected visual observations often occur when the robot is exploring the — Policy | iOpinion; /7 apfé’ﬁlg'rtfgé‘éigjgg due to the fusion of evidence.
environment, which bring negative impacts to embodied agents. _ Agent P time @ } uncertainty 000 y
- . . . Type equation here. '
Negative impacts of unexpected observations to embodied agents
. During training: unexpected observations could mislead the pO“Cy Multi-view evidence combination rule between frame t and ] Reward dQSlgn
learning. a bt@bj 1 . We adopts our uncertainty estimation result into the reward design of training the
. . . . . k = D@0 = —ptpi_kPptP " :
If the target is out-of-view, the recognition may fail to provide rewards Zptnpjz@b,ﬁtblﬂ P recognition policy.
that accurately represent the worth of actions being taken.  biplabiu +but Specifically, the reward |ststra|?htforwardly defined as the estimated belief for the
» During testing: unexpected observations could impede reasonable 1-Yizqbtb] correct class y , which is r* = b;,.
action selection while poisoning the final category prediction. \. y,
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Preliminaries

Target: picture (under green mask) Target: chest of drawers (under green mask) Why did we build this dataset?
Difficulty level: “moderate” Difficulty level: “hard” _ " :
Active recognition is supposed to address
recognition challenges that cannot be
resolved by passive recognition.

We apply evidential deep learning for single frame uncertainty estimation.

* For a K-class recognition task, the frame of discernment 0 =
{k,1 < k < K} contains K exclusive singletons.

Success rate
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L . . . To better facilitate evaluation of active sod
 Considering the visual observation v* at timestep ¢, the method e . 1 2345678910
_ _ _ . . recognition in indoor simulator, we collect and Steps
estimates K 4+ 1 mass values. Besides K belief terms b*, the additional . | | |
. . ; propose this dataset. When the agent is trained without
one is the uncertainty u'. _ . S |
. We assign the difficulty level considering an uncertianty-aware reward, the
 These K + 1 mass values satisfy . o ers . . .
SKpt 4yt =1, 0 < ut, bt < 1 three aspects, i.e., visibility, relative performance is more likely to be
3 f ’ 'k ) distance and observed pixels. ) knegatively affected by noise. y




