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Motivation

In real-world scenarios, visual recognition systems could fail under two major causes.

1. Misclassification between known classes (left part of the testing phase).
2. Misbehavior on unknown-class images (right part of the testing phase).
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Two different kinds of uncertainties happen in the above two failure cases. While most previous
methods could quantify one whole uncertainty term, we want to model both Confusion (left) and Ig-
norance (right) for each sample, separately.
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Flexible Visual Recognition

To better exhibit and evaluate the capability of modeling confusion and ignorance, we propose a
novel task named 'Flexible Visual Recognition'.
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A flexible visual recognition system
could provide combined predictions when
having large confusion and reject making
predictions for unknown-class samples.
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Classification of the proposed approach on images interpo-
lated from a known-known-unknown triplet.
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redict multiple classes when they are unconfident between choices.
redictions when the input is entirely out of the training distribution.

Specifically, we aim to provide a classification model M(-) that could deliver adaptive predictive
sets. For a K-class classification problem, we fomalize the predictive set on image X as

{yi,...,yr} = M(x).k obeys 0 < k < K. Therefore, k = 0 means the recognition system

rejects making a prediction, and the true label y Is supposed to be contained in the predictive
set when X is from known classes.
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Method
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We develop our method under the theory of Subjective
Logic. Confusion is the shared evidence contributing to
multiple categories while not discriminative between
them, while ignorance is completely missing evidence.
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Relation between different masses constituting
the final set of opinions towards a hypothesis.
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Uncertainty = Confusion + Ignorance

Uncertainty + Beliefs belong to single class = 1
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Confusion = Beliefs on non-singleton sets of classes
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During training, the model learns the Dirichlet prior placed

Two graphical demonstrations of evidence com- 9n singleton classes. Confusion and ignorance could then
bination on 2- and 3-class classification task. be obtained through the evidence combination theory.
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Results
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A 3-class classification problem. The
Gaussian-distributed training data are de-
picted with dots, while the background color
iIndicates the predicted value of the corre-
sponding location. We provide our model’s
estimated single-class belief, confusion
and ignorance. [ he entropy over predictions
of a standard net trained with cross-entropy
loss Is shown in the last subfigure for com-
parison.
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Please refer to our paper for
quantitative comparisons.




