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Abstract

This document is the supplementary material of our
WACV submission with ID 0849. We provide the curves
during training, the effect of disturbances, the classifier ac-
tivations over steps, and the video result on the ShapeNet
dataset [l1]].

1. The derivation of Equation 2

We denote the active recognition agent as fy 4 contain-
ing two groups of parameters, i.e., the recognizer and the
recognition policy. Recall P(.) is the projection function
from a 3D instance to a 2D image. We have the following
loss of a two-step recognition process on the object instance
2%, which is
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As qo(y, Va, |vo) and my(aslvg) are our recognizer and
recognition policy, respectively, we factorize the active
recognition process into a multiplication of two modules.

2. The curves during training

We here demonstrate the rewards of both the recognition
policy and the adversarial policy, the accuracy of the train-
ing set, and the accuracy of the validation set in Fig.[T] As
the recognizer gets better during training, the recognition
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policy could obtain rewards about which view benefits the
recognition process. On the other hand, the adversarial pol-
icy gradually could not find views that the recognizer fails
as the training process converges.

During training, the two policies compete with each
other on the recognition performance, which forms a zero-
sum game. The convergence of our method could be com-
prehended as a Nash equilibrium by the min-max training
procedure, i.e., we want to obtain the highest recognition
reward as there is no way to increase the reward achieved
by the adversarial policy.

3. The effect of disturbances

We provide more examples on the view visiting frequen-
cies during the training of ours and the baseline method [2].
The accuracy of each view is therefore marked on each
grid. All heatmaps are normalized independently, i.e., each
heatmap covers the full-color range. During the agent ex-
ploration, the elevation of view grids is not connected end-
to-end. In other words, the agent stays at the same posi-
tion when it attempts to go downwards at the bottom line of
the view grid. It explains why the visiting heatmaps of our
method are bright at the two ends of elevations.

We could notice that in Fig. [2|(b), the policy collapsed to
a monotonous mode. The policy constantly visit views that
could provide positive reward as the recognition accuracy of
other views are unsatisfactory. We named this phenomenon
during training as lingering as the agent being reluctant to
explore challenging views. On the contrary, the adversar-
ial policy disturbs our agent during training by discover-
ing its current deficiencies. Therefore, with similar training
epochs, the proposed method could obtain enough training
for each view instead of overfitting to limited views.

4. The classifier activations over steps

We demonstrate the average classifier activations of the
correct class at each step in Fig. [3] The increase in clas-
sifier activations reflects that the agent could progressively
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Figure 1. We show the statistics of one training trial of our method on the ShapeNet dataset [1]. In each training epoch, we sample a’l’ = 5
trajectory on each object instance and then update our model. The accuracy of the validation set stabilizes after about 4000 epochs.

disambiguate its predictions by taking more movements.

5. Ablation studies on auxiliary loss terms

In this section, we study the impact of Leyntropy and
L forecast in our loss function. The £ forecast WOrks as ap-
proximating the state transition function, which predicts the
next-step feature based on the current state. It motivates our
model to establish the relation between actions and differ-
ent views. The Leytropy promotes exploratory behaviors.
Table [I] compares the final recognition accuracy over both
ShapeNet [[1] and SUN360 [3] datasets.

Datasets/Method | w/0 Lyorccast | W0 Lentropy | Ours
ShapeNet | 756%3 [ 75413 [ 764%3
SUN360 | 692E2 | 69013 | 69.652

Table 1. Ablation studies on the ShapeNet and SUN360 datasets.

6. The video result on the ShapeNet dataset

More qualitative results of the proposed method on the
ShapeNet dataset [1] are included in the demonstrative
video. We show the top-3 guesses at each step to show the
advantage brought by active recognition.
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(a) Our view-visiting frequencies and their corresponding single view accuracy during training.

456 254 6.4

4532 170 29

00 0o

a0 00

138 9.0 362 B8

watercraft bench telephone bathtub
(b) The view-visiting frequencies and their corresponding single view accuracy during training of [2] which does not address the lingering problem.
Figure 2. A comparison between the proposed method and the baseline who does not consider the lingering problem on the ShapeNet

dataset [1]]. We discretize the viewing sphere for each object as a 12 x 12 grid. Then, the visiting frequencies of views by heatmaps on
different categories are demonstrated. The training accuracy of views is accordingly marked on each grid. Note that we normalize each

heatmap separately.
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Figure 3. The classifier activations of the correct category over
steps on both the ShapeNet [[]] and the SUN360 dataset [3].



